A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films
نویسندگان
چکیده
In this study, an integrated flexible gas sensor was developed based on a polymer/multiwalled carbon nanotube composite film by using Bluetooth wireless communication/interface technology. Polymer/multi-walled carbon nanotube composite films were deposited over a polyimide flexible substrate for building a gas sensor array by using a drop-casting method. Sensor response was acquired through interdigitated electrodes and multi-channel sensor boards, which were linked to a Bluetooth wireless transceiver. Additionally, a double-spiral-shaped heater was built into the backside of the gas sensor array as a thermostat to protect it from the influence of ambient temperature. Multi-channel sensing responses were read on a display screen via a smartphone application (app). The advantages of this system include light weight, low cost, highly integrated sensors, wireless telecommunication, and real-time functioning. Thus, it is a promising candidate for deployment in a wearable gas-sensing system used to study air pollution.
منابع مشابه
Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors
This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT) composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C) via impedance spectrum meas...
متن کاملDirect fabrication of single-walled carbon nanotube macro-films on flexible substrates.
We employed a floating chemical vapor deposition technique and applied a liquid (solution)-free precursor system for the fabrication of single-walled carbon nanotube macro-films on various flexible substrates from metallic foils to polymer films.
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملNanocomposite Fabric Sensors for Human Performance and Health Monitoring
Flexible and wearable sensors for human performance sensing have received increased attention, particularly for fitness, healthcare, sports, and military applications. In particular, the measurement of human vital signals provides rich datasets for assessing the subject’s physiological or psychological condition, which are directly linked to performance. Instead of using conventional, bulky, we...
متن کاملStructure and magnetic properties of multi-walled carbon nanotubes modified with iron
Related Articles Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles J. Appl. Phys. 112, 124310 (2012) High-voltage electric-field-induced growth of aligned “cow-nipple-like” submicro-nano carbon isomeric structure via chemical vapor deposition J. Appl. Phys. 112, 114310 (2012) Probing molecular interactions on carbon nanotube surfaces using surface plasmon resonance ...
متن کامل